KING COUNTY ENVIRONMENTAL LABORATORY QUALITY ASSURANCE REVIEW

for

ESTUARINE SEDIMENT ANALYTICAL DATA

NORFOLK CSO SEDIMENT REMEDIATION PROJECT FIVE-YEAR MONITORING PROGRAM APRIL 2001 SAMPLING EVENT

Prepared by:

Fritz Grothkopp

Laboratory Project Manager

Environmental Laboratory Section

Reviewed by:

Colin Elliot

Quality Assurance Officer

Environmental Laboratory Section

September 7, 2001

King County Environmental Laboratory 322 West Ewing Street Seattle, Washington 98119-1507 (206) 684-2300

INTRODUCTION

This quality assurance (QA) narrative is intended to document the QA review conducted on the chemistry analyses performed for the Norfolk CSO Sediment Remediation Study. The QA narrative is organized into the five sections listed below.

- General Comments
- Sample Collection
- Conventional Analyses
- Metal Chemistry
- Organic Chemistry

An overview of the approach used for the QA review is detailed in the *General Comments* section. Additional information specific to each analysis is included in the appropriate analytical section.

This QA review and narrative (specifically defined as QA1) have been conducted in accordance with guidelines established through the Puget Sound Dredged Disposal Analysis (PSDDA) program and the Sediment Management Standards (WAC 173-204-610). Other approaches incorporated in the QA review have been established through collaboration between the King County Environmental Laboratory (KC Laboratory) and the Washington State Department of Ecology (Ecology) Sediment Management Unit.

GENERAL COMMENTS

Scope of Samples Submitted

This QA review is associated with estuarine sediment samples collected in April 24, 2001 as part of the Norfolk CSO Sediment Remediation Study.

Except where noted in the subcontracting sections of this QA review, all analyses have been conducted by the King County Environmental Laboratory (KCEL). Sediment analytical data are reported with associated data qualifiers and have undergone QA1 review, as summarized in this narrative report.

Completeness

Completeness has been evaluated for this data submission and QA review by considering the following criteria:

- Comparing reported data to the planned project analyses summarized in Table 1.
- Compliance with storage conditions and holding times.
- Frequency of analysis of the complete set of quality control (QC) samples outlined in Table 2.

Subcontracted Analyses

Analyses that have been subcontracted and the issues associated with these subcontracted analyses are noted in this narrative.

Methods

Analytical methods are noted in the applicable analytical sections of this QA review.

Target Lists

The reported target lists have been compared to the target analytes listed in *Table 1 - Marine Sediment Quality Standards Chemical Criteria* and *Table 3 - Puget Sound Marine Sediment Cleanup Screening Levels Chemical Criteria* contained in Chapter 173-204 WAC.

Detection Limits

The KC Laboratory distinguishes between the reporting detection limit (RDL) and the method detection limit (MDL).

- The RDL is defined as the minimum concentration of a chemical constituent that can be reliably quantified.
- The MDL is defined as the minimum concentration of a chemical constituent that can be detected.

Some subcontracted laboratory data are available with an MDL only, in accordance with the subcontracting laboratory policies. All analytical parameters are reported with detection limit(s). For some methods the detection limits reported may vary from sample to sample depending on the amount of sample analyzed and any additional dilutions required.

Storage Conditions and Holding Times

Storage conditions and holding times have been evaluated using guidelines established during the Third Annual PSDDA Review Meeting. The approach used to evaluate Total Organic Carbon for holding time has been established between the KC Laboratory and Ecology during previous QA1 review efforts. Extraction and analysis holding times for each method are summarized in each analytical section.

Method Blanks

Method blank results have been used to evaluate the possible laboratory contamination of samples. Method blank results have been reviewed for the presence of analytes detected at or greater than the MDL.

Standard Reference Materials

Standard reference material (SRM) recoveries have been used to evaluate possible low or high analytical bias on a batch-specific basis. SRM analysis is included with metals and selected organic and conventional parameters (see Table 2). SRMs are purchased from the National Institute of Standards and Technology (NIST) or National Research Council of Canada (NRCC) and have certified analyte values. Lab Control Samples (or spiked blanks) may also be analyzed by the analytical laboratory as part of overall quality control but the results are not used to qualify the sample data.

Matrix Spikes

Matrix spike recoveries have been used to evaluate possible low or high analytical bias on a matrix and batch-specific basis. Matrix spikes are analyzed with metals, organics and selected conventionals parameters (see Table 2).

Laboratory Replicate Samples

Replicate analysis (laboratory duplicates or triplicates) is used as an indicator of method precision and is used to qualify data on an analyte and batch-specific basis. Not all replicate data are used, however, as an indicator for data qualification. Only sets of replicate results which include at least one result greater than the RDL are considered for data qualification. These guidelines have been used to account for the fact that precision obtained near the detection limit is not representative of precision obtained throughout the entire analytical range.

Surrogates

Surrogate recoveries have been used to evaluate possible low or high analytical bias on a sample-specific basis. Surrogates are only analyzed for organic parameters.

Data Qualifiers

The data qualification system used for this data submission is presented in Table 3. These data qualifiers address situations that require qualification and generally conform to QA1 guidance. Changes made to SRM data qualification have been discussed with and approved by the Sediment Management Unit of Ecology. The qualifiers shown in Table 3 are also used for the Sedqual electronic data format (except for <MDL and <RDL).

Units and Significant Figures

Data have been reported in accordance with laboratory policy at the time of data generation. Data generally have been reported to three significant figures if above the RDL and two significant figures if equal to or below the RDL.

SAMPLE COLLECTION

This section describes sampling activities associated with the collection of 8 composite sediment samples on April 24, 2001. All sampling activities were conducted following guidance suggested in the Puget Sound Estuarine Protocols (PSEP, 1996 and 1998).

Sampling Locations and Station Positioning

Sampling locations (stations) were selected and the prescribed coordinates determined prior to field activities. Stations were selected to match the historical sampling locations for this on-going monitoring project. The prescribed station coordinates are presented in the following table. Also presented in the table are the actual coordinates recorded during sampling activities. All station coordinates are recorded in state plane coordinate system North American Datum 1983 (NAD83).

Lab ID#	Station Name	Prescribed Northing	Field Northing	Prescribed Easting	Field Easting
L20703-1, -2	NFK501	190170	190154	1278584	1278590
			190146		1278581
			190159		1278577
L20703-3, -4	NFK502	190159	190154	1278514	1278509
· · · · · · · · · · · · · · · · · · ·	•		190157		1278513
		· ·	190157		1278514
L20703-5, -6	NFK503	190195	190175	1278544	1278555
			190181		1278547
			190176		1278545
L20703-7, -8	NFK504	190080	190072	1278625	1278628
			190077		1278624
			190077		1278622

Sediment grab samples were collected from the King County research vessel *Chinook*, which is equipped with a differential global positioning system (DGPS). Field coordinates were recorded using DGPS for each acceptable deployment of the grab sampler as it contacted the sediment. Coordinates for each grab sampler deployment are included in the previous table.

The average coordinates for the sampler deployments are within 6 meters (19 feet) of the prescribed coordinates. Sampling at Stations NFK501 and NFK503 were slightly offset to the north due to low water levels.

Sample Description Table

Lab Sample #	Locator	Sample Collection	Sediment Depth used for Composite (from surface)	Sample Usage
L20703-1	NFK501	Surface Grabs	2 cm	Chemistry
L20703-2	NFK501	Surface Grabs	10 cm	Chemistry
L20703-3	NFK502	Surface Grabs	2 cm	Chemistry
L20703-4	NFK502	Surface Grabs	10 cm	Chemistry
L20703-5	NFK503	Surface Grabs	2 cm	Chemistry
L20703-6	NFK503	Surface Grabs	10 cm	Chemistry
L20703-7	NFK504	Surface Grabs	2 cm	Chemistry
L20703-6	NFK504	Surface Grabs	10 cm	Chemistry

Sample Collection and Handling

Eight composite samples in total were collected April 24, 2001 from the Norfolk Sediment Cap Monitoring Project site using a stainless steel, modified, 0.1 m² dual Van Veen grab sampler deployed from the *Chinook* via hydrowire. For each deployment, samples were collected from both the top 2 cm and top 10 cm of sediment, each from separate Van Veen samplers. Water depth at the four stations ranged between 1 to 2 meters (not corrected for tide). The depth of the grab deployments from the sediment surface ranged from 11 to 16 cm.

Samples were comprised of sediment aliquots collected from three individual grabs at each station with approximately an equal amount of material collected from each grab. The top 2cm samples were collected using a 200 cm2 "cookie cutter" and stainless steel spatula. The 10cm samples were collected using a stainless steel spoon. Both 2cm and 10cm aliquots were taken from each Van Veen cast by sampling each fraction (2cm or 10cm) from a different side of the Van Veen sampler. Each of the aliquots were placed into a separate stainless-steel bowl, covered with foil between grab deployments. After collecting aliquots from three grabs, the sediment sample was thoroughly homogenized and sample aliquots split out into pre-labeled containers. Sample containers were supplied by the King County Environmental Laboratory and were pre-cleaned according to analytical specifications.

Individual sets of sample compositing equipment were dedicated to each station precluding the need for decontamination of the field gear. The Van Veen grab sampler was decontaminated between stations by scrubbing with a brush and ambient water followed by a thorough *in situ* rinsing.

Samples were stored in ice-filled coolers from the time of collection until delivery to the King County Environmental Laboratory. Samples were delivered under chain-of-custody and were maintained as such throughout the analytical process. Samples were stored frozen (-18°C) by the laboratory until analysis with the exception of samples for particle size distribution (PSD) analysis. PSD samples were stored refrigerated at approximately 4°C. A more complete description of sample handling and storage can be found in each analytical chemistry section of this narrative.

CONVENTIONAL ANALYSES

Completeness

Conventional data are reported for all samples and parameters summarized in Table 1. These samples were analyzed in association with the complete set of QC samples outlined in Table 2.

Subcontracted Analyses

Analysis for PSD was subcontracted to Rosa Environmental and Geotechnical Laboratory in Seattle, Washington.

Methods

PSD analysis was performed in accordance with ASTM and Puget Sound Protocols methodologies (*Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound* - page 9 - PSEP, 1986). TOC analysis was performed in accordance with SM5310-B. Total solids analysis were performed in accordance with SM2540-B.

Detection Limits, Units and Significant Figures

For analyses performed at the KC Laboratory, data are reported in accordance with laboratory policy at the time the data were generated. Data are reported to three significant figures for results greater than the RDL and two significant figures for results equal to or less than the RDL. For results reported with less than two or three significant figures, significant zeroes are implied. This may not apply to subcontracted data.

Storage Conditions and Holding Times

Sample storage conditions and holding times have been evaluated using guidelines established during the Third Annual PSDDA Review Meeting. The dates and holding time criteria for the actual storage conditions used for conventional analyses are listed in the table below.

Parameter	Lab ID#	Date Collected	Date Extracted	Date Analyzed	Sample Holding Time	Extract Holding Time
Particle Size Distribution	L20703- 1,2,3,4,5,6,7,8	24-Apr-01	25-Apr-01	25-Apr-01	6 Months at 4°C	NA
Total Solids	L20703- 1,2,3,4,5,6,7,8	24-Apr-01	NA	7-May-01	6 months at -18°C	NA
Total Organic Carbon	L20703- 1,2,3,4,5,6,7,8	24-Apr-01	7-May-01*	25-May-01	6 months at -18°C	6 months at -18°C

^{*} Preparation Date

Sample storage conditions and holding times were met for all samples in this data submission.

Method Blanks

Method blanks were analyzed in connection with solids and total organic carbon analyses. All method blanks results were less than the MDL.

Standard Reference Materials

An SRM (Buffalo River Sediment) was analyzed in connection with TOC analysis. The percent recovery for the SRM analysis was within the 80 to 120% QC limits.

Matrix Spikes

The selected analytical methods run on these samples do not require matrix spikes.

Laboratory Replicate Samples

Laboratory triplicate samples were analyzed for all conventional parameters. The percent relative standard deviations (%RSD) for all triplicate analyses were less than or equal to the 20% QC limit with the exception of PSD.

The %RSD for the gravel portion of the PSD measurement is greater than 20%. These categories represent less than 10% of the total particle distribution of the sample. Higher variability is expected for categories that represent 10% of less of the total mass. The results have been flagged with an "E" qualifier.

METALS CHEMISTRY

Completeness

Metal chemistry data are reported for all samples and parameters summarized in Table 1. These samples were analyzed for mercury and other metals in association with the complete set of QC samples outlined in Table 2.

Subcontracted Analyses

There were no subcontracted metals analyses for these samples.

Methods

Mercury analysis was performed in accordance with EPA Method 7471. Analysis for other metals was performed in accordance with EPA Methods 3050/6010.

Target List

The reported target list includes all metals specified in Table 1.

Detection Limits, Units and Significant Figures

For analyses performed at the KC Laboratory, data are reported in accordance with laboratory policy at the time the data were generated. Data are reported to three significant figures for results greater than the RDL and two significant figures for results equal to or less than the RDL. For results reported with less than two or three significant figures, significant zeroes are implied. This may not apply to subcontracted data.

Storage Conditions and Holding Times

Sample storage conditions and holding times have been evaluated using guidelines established during the Third Annual PSDDA Review Meeting. The dates and holding time criteria for the actual storage conditions used for metals analyses are listed in the table below.

Parameter	Lab ID#	Date Collected	Date Digested/ Extracted	Date Analyzed	Sample Holding Time	Digestate/Extract Holding Time
Total Metals	L20703-1 to -8	4/24/01	5/15/01	5/21/01, 6/6/01	2 Years at -18°C	6 months
Total Mercury	L20703-1 to –8	4/24/01	5/14/01	5/15/01	28 days at -18°C	NA

Sample storage conditions and holding times were met for all samples in this data submission.

Method Blanks

All metals method blanks results were less than the MDL

Standard Reference Materials

The SRM analyzed in association with samples included in this data submission is Buffalo River Sediment. This SRM is not certified for Silver, Aluminum, Beryllium, Iron or Thallium. An SRM recovery less than the QC limit of 80% for ICP metals has not been used to qualify data because the digestion technique used for ICP analysis is different from the technique used during analysis to determine the SRM values. Only SRM recoveries greater than 120% will be used to qualify ICP data.

All total ICP metals SRM recoveries were less than the QC limit of 120%. All total mercury SRM recoveries were within the QC limits of 80-120%.

Matrix Spikes

The reported matrix spike recovery of 401% for aluminum is greater than the 125% upper QC limit. Aluminum results for all samples in this data submission have been qualified with the L flag. The reported matrix spike recovery of 65% for iron is less than the 75% lower QC limit. Iron results for all samples in this data submission have been qualified with the G flag. For the matrix spike, the background concentrations were significantly higher than the spike levels. Variability in the background levels may be responsible for the unacceptable recoveries rather than a true bias.

Laboratory Replicate Samples

The relative percent differences (RPDs) for laboratory duplicate results for all metals were less than or equal to the QC limit of 20%.

ORGANIC CHEMISTRY

Completeness

Organics data are reported for all samples and parameters summarized in Table 1. These samples were analyzed in association with the complete set of QC samples outlined in Table 2.

Methods

BNA analysis was performed in accordance with EPA method 8270. PCB analysis was performed in accordance with EPA methods 8082.

Target List

The reported BNA target list includes all compounds specified in *Table 1 - Marine Sediment Quality Standards Chemical Criteria* and *Table 3 - Puget Sound Marine Sediment Cleanup Screening Levels Chemical Criteria* contained in Chapter 173-204 WAC with the exception of benzo(j)fluoranthene. The KC Laboratory has verified that analytical conditions are sufficient to calculate a total benzofluoranthene result using the reported *b* and *k* isomers.

Reported PCB data include Aroclors 1016, 1221, 1232, 1242, 1248, 1254, and 1260.

Detection Limits, Units and Significant Figures

For analyses performed at the KC Laboratory, data are reported in accordance with laboratory policy at the time the data were generated. Data are reported to three significant figures for results greater than the RDL and two significant figures for results equal to or less than the RDL. For results reported with less than two or three significant figures, significant zeroes are implied.

Storage Conditions and Holding Times

Sample storage conditions and holding times have been evaluated using guidelines established during the Third Annual PSDDA Review Meeting. The dates and holding time criteria for the actual storage conditions used for conventional analyses are listed in the table below.

Parameter	Lab ID#	Date	Date	Date	Sample Holding	Extract Holding
		Collected	Extracted	Analyzed	Time	Time
BNAs	L20703- 1 to -8	4/24/2001	5/10/01	6/5/01- 6/7/01	1 year at -18°C	40 days at 4°C
PCBs	L20703- 1 to -8	4/24/2001	5/9/01	6/7/01	1 year at -18°C	40 days at 4°C

Sample storage conditions and holding times were met for all samples in this data submission.

Method Blanks

1. BNAs

The method blank analyzed with BNAs for L20703 had results above the MDL for Bis(2-Ethylhexyl) Phthalate and Di-N-butyl Phthalate. Sample results for Bis(2-Ethylhexyl) Phthalate and Di-N-Butyl Phthalate for that batch (L20703) have been qualified with the B flag. All Bis(2-Ethylhexyl) Phthalate and Di-N-Butyl Phthalate results for these samples must be treated as estimated values.

All other method blank results (PCBs) were less than the MDL.

Surrogate Recoveries

1. BNA

BNA sample data are qualified when the <u>average</u> surrogate recovery for either or both the acid and base/neutral fractions are outside the 50 to 150% QC limits. The following table summarizes the average surrogate recoveries that are outside the QC limits and the appropriate flag. Only those average surrogate values that are outside the acceptance limit have been posted in the table. The first three samples in the list are the MS, MSD and SRM. Sample L20703-1 had no average surrogate value failures.

Lab ID#	Average Acid Surrogate Recovery	Flag Applied to Acid Compounds	Average B/N Surrogate Recovery	Flag Applied to B/N Compounds
L20703-2	43.5	G		
L20703-3	49.25	G		
L20703-5	44.5	G		
L20703-6	28	G	44.5	G
L20703-7	33.5	G	46.5	G
L20703-8	33.25	G	47.5	G

2. PCB

PCB sample data are qualified when <u>both</u> surrogate recoveries are outside QC limits. At least one PCB surrogate recovery was within the 50 to 150% QC limits for all samples in this data submission.

Standard Reference Materials

1. BNA

The sediment SRM analyzed in association with the reported BNA results is SRM 1944a, certified by the National Institute of Standards and Technology (NIST). Only a partial list of BNA parameters have certified values in SRM 1944a and therefore only those are used to qualify the data. Results for this partial list of compounds for the one batch of samples have been qualified based on the SRM recoveries outside the 80 to 120% QC limits. The recoveries and flags are summarized in the following table.

	L20703-1	to 8
Compound	% Recovery	Flag
Naphthalene	13	G
Phenanthrene	84	
Anthracene	83	
Fluoranthene	111	
Pyrene	89	
Benzo(a)anthracene	99	
Chrysene	109	
Benzo(b)fluoranthene	100	
Benzo(k)fluoranthene	99	
Benzo(a)pyrene	109	
Indeno(1,2,3-c,d)pyrene	81	
Dibenzo(a,h)anthracene	110	
Benzo(g,h,i)perylene	66	G

2. PCB

The sediment SRM analyzed in association with the reported PCB results is HS-2, certified by the National Research Council of Canada. SRM HS-2 has a certified value for Aroclor 1254. The recovery of the certified parameters must be within 80 to 120% or the appropriate data are flagged. The SRM results for the batch of analyses is summarized below:

	L20703-1	to 8
Compound	% Recovery	Flag
Aroclor 1254	100	

Matrix Spikes

1. BNA

The matrix spike recoveries for each BNA compound must be within the 50 to 150% QC limits. If not, all results for those particular compounds within the batch of samples must be flagged as follows. A G flag is applied if the recovery is between 10 and 50%, an X flag is applied if less than 10% recovery and an L flag is applied if greater than 150% recovery. The following table summarizes the matrix spike recoveries for specific compounds that are outside the QC limits and the appropriate flag.

	L20703-1	to 8
Compound	% Recovery	Flag
N-Nitrodimethylamine	32	G
Phenol	2 7.2	G
Bis(2-Chloroethyl)Ether	26	G
2-Chlorophenol	28.3	G
1,3-Dichlorobenzene	23.6	G
1,4-Dichlorobenzene	23	G
1,2-Dichlorobenzene	24.3	G
Hexachloroethane	28	G
1,2,4-Trichlorobenzene	29.7	G
Naphthalene Naphthalene	32.3	G
Hexachlorobutadiene	29.9	G
Fluoranthene	165	L
Bis(2-Ethylhexyl)Phthalate	161	L
Aniline	0	Х
Caffeine	155	L

2. PCB

The matrix spike recoveries for PCB compounds must be within the 50 to 150% QC limits. A G flag is applied if the recovery is between 10 and 50%, an X flag is applied if less than 10% recovery and an L flag is applied if greater than 150% recovery. Aroclor 1260 and 1016 only are used as the spiking compounds for PCB analysis.

All PCB matrix spike recoveries are within the QC limits.

Laboratory Replicate Samples

Lab Replicate (duplicate) samples for Organics have a target acceptance limit 100% for the Relative Percent Difference (RPD). All duplicate analyses showed acceptable RPD values except for the following:

1. BNAs

The RPDs for Phenanthrene, Fluoranthrene, Pyrene, Chrysene, Benzo(b)Fluoranthrene, and Benzo(a)pyrene for the duplicate analysis of Sample L20703-6 were 200%. These parameters were detected just above the RDL in the lab duplicate but not in the original sample, resulting in an RPD of 200%. All results for these parameters have been flagged with an "E" for Samples L20703-1 through –8.

2. PCBs

No RPD limits were exceeded for the compounds reported.

TABLE 1 SEDIMENT SAMPLE INVENTORY

Sample	Sample Locator Description PSD	PSD		TOC	Metals ¹	BNA ²	PCB	Solids TOC Metals BNA PCB Comments
	(see SAP)							
L20703-1	L20703-1 NFK501/Norfolk CSO	X	×	×	X	X	×	
	channel, 0-2inches							
L20703-2	L20703-2 NFK501/Norfolk CSO	×	×	×	×	×	×	
	channel, 0-10 inches							
L20703-3	L20703-3 NFK502/Delta of CSO	×	×	×	×	×	×	
	channel, 0-2 inches							
L20703-4	L20703-4 NFK502/Delta of CSO	×	X	×	×	×	X	
	channel, o0-10 inches							
L20703-5	L20703-5 NFK503/Boeing SD	×	X	×	×	×	×	
	channel, 0-2 inches							
L20703-6	L20703-6 NFK503/Boeing SD	×	X	X	X	X	X	
	channel, 0-10 inches							
L20703-7	L20703-7 NFK504/Upriver of	×	X	X	X	X	X	
	CSO, 0-2 inches							
L20703-8	L20703-8 NFK504/Upriver of	X	X	×	×	X	X	
	CSO, 0-10 inches							

1 Metals = Hg, Al, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, Tl, Zn, Fe 2 BNA = includes Chlorobenzenes

TABLE 2

	QC SAMPLE FRE	SAMPLE FREQUENCY FOR SEDIMENT CHEMICAL AND PHYSICAL PARAMETERS	DIMENT CHEMICA	L AND PHYSICAL	PARAMETERS	
Parameter	Method Blank	Duplicate	Triplicate	Matrix Snike	Mas	Cumpocoton
PSD	No	10% of samples	10% of samples	No	S C N	Sallogates
Total Solids	1 per QC batch	5% minimum, 1	5% minimum, 1	No	ON.	Š
H		per uc parch	per CC batch			
3	1 per CC batch	5% minimum, 1	5% minimum, 1	S	1 per QC batch	Ž
		per QC batch	per QC batch			
Metals	1 per GC batch	5% minimum, 1	å	5% minimum, 1	1 per QC batch	Z
		per QC batch		per QC batch	-	!
BNA (w/	1 per GC batch	5% minimum, 1	Š	5% minimum, 1	1 per OC batch	Yes
Chlorobenzenes)		per QC batch		per QC batch		3
PCB	1 per GC batch	5% minimum, 1	S	5% minimum, 1	1 per QC batch	Yes
		per QC batch		per QC batch	-	}

TABLE 3 - SUMMARY OF SEDIMENT DATA QUALIFIERS

Condition to Qualify	Flag	Organic QC Limits	Metal QC Limits	Conventional QC Limits	Comment
very low matrix spike recovery	X	< 10 %	< 10 %	< 10 %	
low matrix spike recovery	G	< 50%	< 75%	< 75% *	
high matrix spike recovery	L	> 150%	>125%	>125% *	
low standard reference material recovery	G	< 80%	NA	< 80%	
high standard reference material recovery	L	>120%	>120%	>120%	
high duplicate relative percent difference	E	>100 %	>20%	NA	for organics and metals
high triplicate relative standard deviation	E	NA	NA	> 20 %	for conventionals
less than the reporting detection limit	<rdl **</rdl 	NA	NA	NA	
less than the method detection limit	<mdl **</mdl 	NA	NA	NA	
contamination reported in blank	В	>MDI.	>MDI.	>MDL	
biased data based on very low surrogate recoveries	Х	all fraction surrogates <10%	NA	NA	average surrogate recovery for BNA
biased data based on low surrogate recoveries	G	all fraction surrogates <50%	NA	NA	average surrogate recovery for BNA
biased data based on high surrogate recoveries	L	all fraction surrogates >150%	NA	NA	average surrogate recovery for BNA
rejected - unusable for all purposes	R	NA	NA	NA	
a sample handling criteria has not been met	Н	NA	NA	NA	container, hold time,

65% to 135% for Total Sulfides.

^{**} For Sedqual files, <MDL uses a "U" flag, <RDL is not flagged.

CONVENTIONAL ANALYSES QC DATA

CONVENTIONAL ANALYSES QC DATA

METRO Environmental Laboratory

WORK GROUP REPORT (wk02)

Jun 15 2001, 08:48 am

Work Group: WG55212 (norfolk TOC sed.) for Department: 3 - Conventionals

Created: 08-MAY-01 Due: Operator: gmw

Sample	Project Number Project Descript	ion PKey	C Product	Matrix	Stat UA	Workdate D	uedate
L20703-1 L20703-2 L20703-3 L20703-4 L20703-6 L20703-7 L20703-8 H055212-2 MG55212-3 MG55212-3	423056-160 Norfolk Cleanup S 423056-160 Norfolk Cleanup S MB Norfolk Cleanup S	Study SED	S TOC	SALTWTRSED SALTWTRSED SALTWTRSED SALTWTRSED SALTWTRSED SALTWTRSED OTHR SOLID OTHR SOLID SALTWTRSED SALTWTRSED	DONE U	22-MAY-01 0 22-MAY-01 0 22-MAY-01 0 22-MAY-01 0	8-JUN-01 8-JUN-01 8-JUN-01 8-JUN-01 8-JUN-01 8-JUN-01
1.20703-1 1.20703-2 1.20703-3 1.20703-5 1.20703-6 1.20703-6 1.20703-8 MG55212-2 MG55212-3 MG55212-4	3-Grab Composite, 0 - 2 cm 3-Grab Composite, 0 - 10 cm 3-Grab Composite, 0 - 2 cm 3-Grab Composite, 0 - 2 cm 3-Grab Composite, 0 - 10 cm 3-Grab Composite, 0 - 2 cm 3-Grab Composite, 0 - 2 cm 3-Grab Composite, 0 - 10 cm HICONC L20703-1 WG55212-3 L20703-1						

KING COURTY METRO ENVIRONMENTAL LABGRATORY Lab QC Report - 06/15/01 08:50 Run ID: R66822 Workgroup: WG55212 (norfolk TOC sed.)

		Limits		Limits	
		RPD/RSD Qual		ts RPD/RSD Qual	•
				160 PKey: SED % Rec. Qual Limits	
d PKey: SED		PKey: SED		11) Project: 423056- Truevalue LT Value	0255
Toject: 423056-16		ect: Limits	30-120	CVTOC Method: FPA\$080-FSEP96 (03-04-002-001) Project: 423056-160 PMey: SED Truevalue LD Value * Rec. Qual Limits Truevalue LT Value * Rec. Qual Li	
(03-04-005-001) I		0660-PSEP96 (03-44-002-001) Proj Truevalue SEM Value * Rec. Qual	3290C <u>98</u>	nod: FPA9060-PSEPS LD Value * Rec.	0 5 8 5 0
1: EPASOGO-PERISG Value Qual	cMDL	sthod: EPA9066-PSFP96 SampValue Truevalue			00095
Matrix: OTHR SOLID Listtype: CVTOC Method: EPA\$060-PSB#96 {03-04-002-001} Project: 423056-160 PRev: SED Mdl Rdi Onits MB Value Qual	00 mg/Kg <	pe: CVTOC M thits	00 mg/Æg	ID:WGS5212-3 LT:WGS5212-4 L20703-1 Matrix: SALTWIRSED Listtype: Parameter Mdl Rdl Units SampValue	DII / Du
OTHR SOLID Listt	500 1000	. OTHR SOLID List	500 1000	4 120703-1 Matri Mdl F	1000
.	nic C	5212-2 Matrix hr	Total Organic Carbon	212-3 LT:WG55212-	Total Organic Carbon
MB:WG55213:1 Parameter	Total Or	SPM:WGS5212-2 Farameter	Total On	ID:WG55211	Total Op

METRO Environmental Laboratory

WORK GROUP REPORT (wk02)

Jun 15 2001, 08:49 am

Work Group: WG55211 (norfolk TOTS) for Department: 3 - Conventionals

Created: 08-MAY-01 Due: Operator: gmw

Sample	Project Number Project I	escription	РКеў С	Product	Matrix	Stat UA	Workdate	Duedate
L20703-1 L20703-2 L20703-3 L20703-4 L20703-5 L20703-5 L20703-7 L20703-8 WG55211-1 WG55211-2 WG55211-3 Comments:	423056-160 Norfolk C 423056-160 Norfolk C 423056-160 Norfolk C 423056-160 Norfolk C 423056-160 Norfolk C	cleanup Study	SED S	TOTS TOTS TOTS TOTS TOTS TOTS TOTS TOTS	SALTWTRSED SALTWTRSED SALTWTRSED SALTWTRSED SALTWTRSED SALTWTRSED SALTWTRSED OTHR SOLID SALTWTRSED SALTWTRSED	DONE U	01-MAY-01 01-MAY-01 01-MAY-01 01-MAY-01 01-MAY-01 01-MAY-01	08-JUN-01 08-JUN-01 08-JUN-01 08-JUN-01 08-JUN-01 08-JUN-01 08-JUN-01 08-JUN-01
L20703-1 L20703-2 L20703-3 L20703-5 L20703-6 L20703-7 L20703-8 MG55211-2 WG55211-3	3-Grab Composite, 0 - 2 3-Grab Composite, 0 - 10 3-Grab Composite, 0 - 10 3-Grab Composite, 0 - 10 3-Grab Composite, 0 - 2 3-Grab Composite, 0 - 10 3-Grab Composite, 0 - 10 1-10 1-10 1-10 1-10 1-10 1-10 1-	cm cm cm cm cm						

KING COUNTY METRO ENVIRONMENTAL LABGRATORY Lab QC Report - 06/15/01 08:51 Run ID: R66144 Workgroup: WG55211 (norfolk TOTS)

	######################################	20
	Limits RPD/RSD Onel Tamits	
	FKey: SED	
cas A	Project: 423056-160 pp	
: 423056-160 pre		
F.001) Project	SM2540-G (03-	
MB:WGBS211-1 Matrix: OTHR SOLID Listtype: CVTOTS Nethod: SM2840-G (03-01-007-001) Project: 423056-160 PKey: SE3 Parameter Md1 Rd1 Units MG Value Qual Total Solids .01 t <mdl< td=""></mdl<>	ype: CVIOIS Method: SM2540-G (03-01-007-001) alue Ituevalue LD Value	
pe: CVTOTS Method: SM25 11 Units MB Value * AMDL	85	# (S)
THR SOLID Listtype Mdl Rd1 .005 .01	120703-2 Matrix: Mdl Rdl	
1 Matrix: C	2 LT:WGS5211-3	<u>n</u>
MB:WG55211-1 Farameter Total Solids	ID:WG55211- Farameter	Total Solifs

METRO Environmental Laboratory

WORK GROUP REPORT (wk02)

Jun 15 2001, 08:49 am

Work Group: WG55197 (Norfolk PSD (ROSA)) for Department: 3 - Conventionals

Created: 07-MAY-01 Due: Operator: BP

Sample	Project Number Project Descrip	tion Pi	tey C	Product	Matrix	Stat UA	Workdate	Duedate
L20703-1 L20703-2 L20703-3 L20703-4 L20703-5 L20703-6 L20703-7 L20703-8	423056-160 Norfolk Cleanup 423056-160 Norfolk Cleanup	Study St Study Si Study Si Study Si Study Si Study Si Study Si	ed s	PSD PSD PSD PSD PSD PSD	SALTWTRSED SALTWTRSED SALTWTRSED SALTWTRSED SALTWTRSED SALTWTRSED SALTWTRSED SALTWTRSED	DONE U DONE U DONE U DONE U DONE U	08-JUN-01 08-JUN-01	08-JUN-01 08-JUN-01 08-JUN-01 08-JUN-01 08-JUN-01 08-JUN-01
Comments; 120703-1 120703-2 120703-4 120703-6 120703-6 120703-7 120703-8	3-Grab Composite, 0 - 2 cm 3-Grab Composite, 0 - 10 cm 3 Grab Composite, 0 - 10 cm 3-Grab Composite, 0 - 2 cm 3-Grab Composite, 0 - 10 cm 3-Grab Composite, 0 - 2 cm 3-Grab Composite, 0 - 2 cm 3-Grab Composite, 0 - 10 cm 4-Grab Composite, 0 - 10 cm 4-D, LT perfermed on 120703-2							

Rosa Environmental and Geotechnical Laboratory, LLC

QA SUMMARY

PROJECT: King County Environmental Lab

Project No.: 423056-160

REGL Triplicate Sample ID:

22822

Batch No.: 1011-022 -01

Client Triplicate Sample ID:

L20703-2

Page: 1 of 1

Relative Standard Deviation, By Component

Sample ID	Gravel	Sand	Silt	Clay
L20703-2 A	0.9	78.8	16.6	3.7
L20703-2 B	0.3	77.3	18.6	3.8
L20703-2 C	0.2	78.4	17.4	4.0
AVE	0.44	78.21	17.51	3.84
STDEV	0.40	0.77	0.99	0.17
%RSD	89172	0.99	5.67	4.43

Notes to the Testing:

- 1. See narrative for discussion of testing.
- 2. The shaded box represents <10% of the sample. The QC sample does not need to be reanalyzed, since it is assumed higher variability, is due to the low level of this category in the sample rather than a systematic failure. Please refer to subcontract agreement Section 3.3.5.2 for the full explanation.</p>

METAL CHEMISTRY QC DATA

KING COUNTY METRO ENVIRONMENTAL LABORATORY Lab QC Report - 07/12/01 07:46 Run ID: R67265 Workgroup: WG5534% (5/15/0: Norfolk Seds)

SB:MG55349-1 MB:MG55349.2 Matrix: BLANK WTW Listtype: MT:CP-\$ED Method: EDM38550/6010B (BG:02:004-002) Project: Parameter Md1 Rd1 Units MB Va.ue Truevalue SB Value % Rec Oust Limits Truevalue	Matrix: BLANK Mdl Rdl	WTR LABITY	oe: MT:CP-SI MB Va.ue .	ED Method: E Truevalue SB	n mpasusua/edidb SB Value * Rec.	B (06-01-0)	004-002) Pro Limits True	\$	PKey: SED	Cubl Timite	690/000	
Silver, Total, ICP Aluminum, Total, ICP	•••	7/5w	^MDL ∧MDL	1,2 1,	ļ.			100000	ä	.	and the second	
Arsenic, Total, ICP	.05 .25	mg/L	MOL.	e .		w i	85-115					
Cadmium, Total, ICP	.003 .015	17,0	Ş.		******	3 26	85-115					
Chromium, Total, ICP Copper, Total, ICP		7/5u	ADI.	M ou	1.14 95 1.15 96	no co	85-115 85-115					
<pre>Iron, Total, ICP Manganese, Total, ICP</pre>		ng/Ir mg/Ir	, MOI.	50 4	45.2 90 3.84 96	60 41	85-115 85-115					
Nickel, Total, ICP		Mg/t.	, MOI	vi	*****	** :	85-115 or r					
Selenium, Total, ICP		17/6	Į.		1.9	i 33	85-115 85-115					
Thallium, Total, ICP Zinc, Total, ICP	.2 1 .005 .025	n7/5m	JOK V	in 4	3.72 93 4.5 100	6 3	85-115 85-115					
MB:WGS5349-2 Matrix: BLANK WIR		Listtype: MTICP-SZD	Method: EP	EPA3050A/6010B (06-02-004-002)	(06-62-004-0	02) Project:	t: 423056-160	60 PKey: SEJ	C			
Darameter	Md1 Rd1	Units		Onal								
Silver, Total, ICP	٠ ا	· ***										
Aluminum, Total, ICP Arsenic, Total, ICP	.15	ng/t	JOK V									
Beryllium, Total, ICP		17,5m	JOY .									
Cadmium, Total, ICP Chromium, Total, ICP		17/5m										
Copper, Total, ICP ,	.004 .02	mg/t.	ŽQĮ									
Manganese, Total, ICP		7/00	W)									
Nickel, Total, ICP Lead, Total, ICP	.02 .1	7/5m										
Selenium, Total, ICP	.05 .25	1/5m	AMDI.									
zinc, Total, ICP	.005 .025	1 7 PB	Wor.									
SRM:WG55349-3 Malrix: SALTWIRSED		Listtype: MIICP-SED Method:		EPAJ050A/6010B (06-02-014-002) Project:	IB (06-02-014	-002) froj		PKey: S3D				
Parameter	Mdl Rdl	Units	SampValue	Truevalue SRA	SRM Value % lec	. Qual	Limits				Ten deal (Person China)	his Timit
Arsenic, Total, ICP Cadmium, Total, ICP	12 59.5 .71 3.57	mg/Kg mg/Kg		211 16 2.38 1.			0.0					
Chromium, Total, ICP		mg/Kg mg/Kg			·····	120	.					
Manganese, Total, ICP		mg/Kg			0000000	îŝ						•
Nickel, Total, ICP Lead, Total, ICP		04/Kg 04/Kg		44.1 404	31.3 71 362 90	120	00					•
Selenium, Total, ICP Zinc, Total, ICP	1.2 59.5 1.2 5.95	mg/Kg mg/Kg				120	p q					
					Page 1	· · · · · · · · · · · · · · · · · · ·	me value	\$ 17				
						. 42 		3				
							たりん	70	18/5/6			

KING COUNTY METRO ENVIRONMENTAL LABORATORY Lab QC Report - 07/12/01 07:06 Run ID: R67265 Workgroup: WG55349 (5/15/01 Norfolk Seds)

22/24/24/2000 t 10/05/00/00 11/06/2000	n Damate		400 - 1000 000 000 000 000 000 000 000 00	.		
	KLI/KSD Quat		RED/RSD Qual	приме	0 RP3/RSD Qua:	
			Key: SED		NKey: SED	
			Project: 423056-160		Project: 423056-160	-
PKey: SED			គឺរ		#125	75-125 75-125 75-125 75-125 75-125 75-125 75-125
Project:			06-02-004-0 Rec Qual		66-02-004-1 Rec. Qual	ן פ
(06-02-004-002) SDM Value - 8-0			3050%/6010B (ID Value 1 <mdl 7280 <mdl< td=""><td>. 19 . 11.2 11.2 12.8 13300 222 222 6.45 6.45</td><td>3050A/entoB (MS Value</td><td></td></mdl<></mdl 	. 19 . 11.2 11.2 12.8 13300 222 222 6.45 6.45	3050A/entoB (MS Value	
350A/60:0B	1007 51007 66130 66132 1151 1151 1199 1199 1199 1199 1199 119	22 623.8 1143 125 125 128	Method a Trueva		Method Trueval 1.2	**************************************
Nethod: EPA3:			s. MITCP-SED M	 	f Jo Fritch-SED SampVatus AMDi 7510	
. MTCCP-SED N			### Disttype: ### Dhits .9 mg/kg 24.7 mg/kg 12.4 mg/kg		FSED Listtype: Rd1 Units 1.02 mg/Kg 1.02 mg/Kg 3.05.5 mg/Kg	12.7 ng/kg .255 ng/kg .764 ng/kg 1.27 ng/kg 12.7 ng/kg 12.7 ng/kg .509 ng/kg
/5/6/ Matrix: SOIL Listtype: MT:CP-SED Wethod: EPA:			MAI MAI 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 + 1/4 / 2 + 1/	Erik: Salimin	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
9/5/6/ Matrix: SC	GP ICP ICP ICP ICP	CP CP ICP	120703-7 Pat	to t	120703-7 Mai	ICP ICP ICP ICP ICP ICP P I, ICP
LCS CAE	Silver, Total, ICP Aluminum, Total, ICP Arsenic, Total, ICP Beryllium, Total, ICP Cadmium, Total, ICP Carrism, Total, ICP Copper, Total, ICP	Manganese, Total, ICP Nickel, Total, ICP Lead, Total, ICP Selenium, Total, ICP Thallium, Total, ICP Zinc, Total, ICP	International Internationa	Seryllium, Total, ICB Cadmium, Total, ICP Chromium, Total, ICP Copper, Total, ICP Iron, Total, ICP Nickel, Total, ICP Lead, Total, ICP Selenium, Total, ICP Selenium, Total, ICP Selenium, Total, ICP Thallium, Total, ICP	Main	Arsenic, Total, ICP Beryllium, Total, ICP Cadmium, Total, ICP Chromium, Total, ICP Copper, Total, ICP Iron, Total, ICP Manganese, Total, ICP Manganese, Total, ICP

KING COUNTY METRO ENVIRONMENTAL LABORATORY LAD QC Report - 07/12/01 07:(6 Run ID: R67265 Workgroup: WG55349 (5/15/01 Norfolk Seds)

LLimit	
RPD/RSD Oual	RPD/RSD Qual
	,
	Kry: SED
	423.056-1360
1 Limits 75-125 75-125 75-125 75-125	FRC. Qual Limits
1 Rec. Qual 89 92 94 108	
	SDIL/Value
# 183.4 183 4:5 266	Truewalue SDIL.Value
SampYalue 9.51 <mdl <mdl 36</mdl </mdl 	SampYallve
mg/kg mg/kg mg/kg mg/kg	Rd1 Chits Sampvalu
1 Rd3 7.64 12.7 50.9 1.27	2000000000000000000000000000000000000
2.5 1.0 1.0 2.5 2.5 2.5	Parameter M41
1, ICP CP 1, ICP	Matrix
Parameter Lead, Total, ICP Selenium, Total, ICP Thallium, Total, ICP Zinc, Total, ICP	Imecet
Parameter	Parameter

KING CCUNTY METRD ENVIRONMENTAL LABORATORY Lab QC Report - 05/16/01 08:50 lun ID: R66294 Workgroup: W353347 (5/15/01 Fort Dent Water Reuse)

			al Limit		al Limit		al Limit. 20		1 Limits				
			RPD/RSD Qual		RPD/RSD Qual		RPD/RSD Qual		RPD/RSD Qual				
			. Qual Limits										
£		y: STD	Value % Rec.			. STD		STD			·		
Matrix: Blank WTR Listtype: WING-GBD Wethod: BPA 245 5 (66-61-364-663) Project: 423258-10 PKey: STD Matrix: Blank Will Rdi Units MB Value Cost		Project: EKey: SID	its Truevalue	STB	120	Project: 423258-10 PKey: STD	E8	Project: 423258-10 PKey: STD	20 20				
Project: 4232			# Nec. Qual Limits 103 85-115	Project: FKey: STD	100 X		* rec. yuai Limits		Sampvaide Truevalue MS Value & Rec Qual Limits <ndl .005="" .514="" 104="" 80-120<="" td=""><td></td><td></td><td>-</td><td></td></ndl>			-	
(06-01-)04-003		100	.00516	45.5 (03-01-004-#03) Pr	DB B	15.5 (06.01-004-		5.5 (06-01-004-	.ue MS Value &				
fethod: BPA 245.5 MB Value Onal	3	*: MTHG-SED Met	ADL 0.005	od: EPA 245.5 (05 SampValue Trueva	6.25	ED Nethod: EPA 145.5 (06.01-0	<mdi.< td=""><td>Method: EPA 34</td><td>ampvatue Trhevel</td><td></td><td></td><td></td><td></td></mdi.<>	Method: EPA 34	ampvatue Trhevel				
type: MTHG-SED Me Rdi Units P	ng/t	Matrix: BLANK WTR Listtype: MTHG- M41 641 fails on man	mg/T.	MTHG-SED Method Rdl Units S	3 ng/Kg	Listtype: MTHG-SED Rdl Dnits S	mg/Kg	sttype: WTHG-SED	mg/Kg				
ANK WIR Listty Mdl R	20003] .	SOIL Listtype: Mdl R	.094	LZ0771-12 Matrix: S0IL Listtype: WING-SED Nethod: EPa 145.5 (06.01-004-003) Mdl Rdl Dnits SammWalns Truesston in process	.198	Atrix: SOIL List	1.				
Matrix: Bi	al, CVAA	SB:MG55347-2 ME:MG55347-1	al, CVAA	SRM:WGS5:47-3 Matrix: SOIL Listtype: MTHG-SED Method: EPA 245.5 (65-61-004-463) Project: Parameter Mdl Rdi Onits SampValue Truevalue KRM Value & par c	al, CVAA	L20771-12 }	al, CVAA	MS:WGS5347-5 L2D711-12 Matrix: SOIL Listtype: WTHG-SED Method: EPA 245.5 (06-01-004-003)	al, CVAA				
MB:WGS5347-1 Mai	Mercury, Tot	SB:WG55347	Mercury, Total, CWAA	SRM:WGS5147+3 M. Parameter	Mercury, Tot	LD:WG55347-4 Parameter	Mercury, Total, CVRA	MS:WGS5347-5	Mercury, Total, CVAA				

ORGANIC CHEMISTRY QC DATA

METRO Environmental Laboratory

WORK GROUP REPORT (wk02)

May 15 2001, 10:33 am

Work Group: WG55264 (BS#110-bnall) for Department: 7 - Organics, Trace

Created: 10-MAY-01 Due: Operator: lm/mm

Sample	Project Number Project Descrip	tion PKey	y C Product	Matrix Stat U	A Workdate Duedate
L20703-1 L20703-2 L20703-3 L20703-4 L20703-5 L20703-6 L20703-7 L20703-8 WG55264-1 WG55264-2 WG55264-3 WG55264-4 WG55264-6 Comments:	423056-160 Norfolk Cleanup MB SB MS MS MSD LD SRM	Study SED SED SED SED SED	S BNALL	SALTWTRSED PREP U OTHR SOLID PREP U OTHR SOLID PREP U SALTWTRSED PREP U OTHR SOLID PREP U	08-MAY-01 08-JUN-01 08-YAM-80 10N-UR-80 10N-UR-90 1
1,20703-1 1,20703-2 1,20703-3 1,20703-4 1,20703-6 1,20703-6 1,20703-7 1,20703-8 1,0055264-1 1,0055264-3 1,0055264-4 1,0055264-5 1,0055264-6	3-Grab Composite, 0 - 2 cm 3-Grab Composite, 0 - 10 cm 3-Grab Composite, 0 - 10 cm 3-Grab Composite, 0 - 2 cm 3-Grab Composite, 0 - 2 cm 3-Grab Composite, 0 - 10 cm 3-Grab Composite, 0 - 10 cm 3-Grab Composite, 0 - 10 cm MB051001 WG55264-1 L20703-5 WG55264-3 L20703-5 L20703-6 1944				

KING COUNTY METRO ENVIRONMENTAL LABORATORY Lab QC Report - 06/29/01 09:39 Run ID: R68341 Workgroup: WG55264 (BS#110-bnall)

MB:WG55264-1 Matrix: OTHR SOLID Listtype: ORBNALL Method: EPA 35508/8270C (7-3-01-004) Project: PKey: SED

	N-Nitrosodimethylamine Phenol	Bis(2-Chloroethyl)Ether 2-Chlorophenol	1,3-Dichlorobenzene 1,4-Dichlorobenzene	1,2-Dichlorobenzene Bis(2-Chloroisopropyl)Ether	N-Nitrosodi-N-Propylamine Hexachloroethane	Nitrobenzene Isophorone	2-Nitrophenol 2.4-Dimethylphenol	Bis(2-Chloroethoxy)Methane	1,2,4-Trichlorobenzene	Naphtnalene Hexachlorobutadiene	2,4,6-Trichlorophenel 2-Chloronaphthalene	Acenaphthylene	Dimetnyl Putnalate 2,6-Dinitrotoluene	Acenaphthene 2.4-Dinitrotoluene	1	premyt Phimalare 4-Chlorophenyl Phenyl Ether	N-Nitrosodiphenylamine 1.2-Diphenylhydrazine	4-Bromophenyl Phenyl Ether	Hexachlorobenzene Pentachlorophenol	Phenanthrene	Di-N-Butyl Phthalate	Fluoranthene Pyrene	Benzyl Butyl Phthalate		Bis(2-Ethylhexyl)Ph:halate	Benzo(b) fluoranthene	Benzo(K)†luorantnene Benzo(a)pyrene	Indeno(1,2,3-Cd)Pyrene	Benzo(g,h,i)perylene	
Mdl Rdl	20 40 9 18			.26 .53 15 30					.26 .53					7 14 3 6	13 26		20 40 10 20		5 1.35	4 4	2°	8 7 8	5 12		5.7 21 21		o v o	9 18 7	8 10 40 48	
Units MB Va	ug/Kg <md< th=""><th></th><th></th><th></th><th></th><th></th><th>ug/Kg <mo< th=""><th></th><th>*****</th><th></th><th>ug/Kg <md< th=""><th></th><th></th><th>ug/kg <#O</th><th></th><th></th><th>ug/kg <md< th=""><th></th><th>ON By/8n</th><th></th><th>ug/Kg 15.</th><th>eg/kg ⇔0</th><th></th><th>10000</th><th>ug/Kg 14.</th><th></th><th>ug/kg <mo< th=""><th>000000</th><th></th><th>% %</th></mo<></th></md<></th></md<></th></mo<></th></md<>						ug/Kg <mo< th=""><th></th><th>*****</th><th></th><th>ug/Kg <md< th=""><th></th><th></th><th>ug/kg <#O</th><th></th><th></th><th>ug/kg <md< th=""><th></th><th>ON By/8n</th><th></th><th>ug/Kg 15.</th><th>eg/kg ⇔0</th><th></th><th>10000</th><th>ug/Kg 14.</th><th></th><th>ug/kg <mo< th=""><th>000000</th><th></th><th>% %</th></mo<></th></md<></th></md<></th></mo<>		*****		ug/Kg <md< th=""><th></th><th></th><th>ug/kg <#O</th><th></th><th></th><th>ug/kg <md< th=""><th></th><th>ON By/8n</th><th></th><th>ug/Kg 15.</th><th>eg/kg ⇔0</th><th></th><th>10000</th><th>ug/Kg 14.</th><th></th><th>ug/kg <mo< th=""><th>000000</th><th></th><th>% %</th></mo<></th></md<></th></md<>			ug/kg <#O			ug/kg <md< th=""><th></th><th>ON By/8n</th><th></th><th>ug/Kg 15.</th><th>eg/kg ⇔0</th><th></th><th>10000</th><th>ug/Kg 14.</th><th></th><th>ug/kg <mo< th=""><th>000000</th><th></th><th>% %</th></mo<></th></md<>		ON By/8n		ug/Kg 15.	eg/kg ⇔0		10000	ug/Kg 14.		ug/kg <mo< th=""><th>000000</th><th></th><th>% %</th></mo<>	000000		% %
atue Quat	רנ	ا ا	د ب	. ب	ر ب			- ب	. ب ب	يدي		. پ	ب	ب ب	- يو ا	ر د		. بـ ١	ب ہے	<u>.</u>	1,F	<u>.</u>	<u>.</u>		ري <u>-</u> ه	، ب ا	ي ي	· - -	!	

KING COUNTY METRO ENVIRONMENTAL LABORATORY Lab QC Report - 06/29/01 09:39 Run ID: R68341 Workgroup: WG55264 (BS#110-bnall)

362686888888888888888888888888888888888
22222222222222222222222222222222222222
* * * * * * * * * * * * * * * * * * * *
ងទីឧ-១ឧបឧបសឧបសឧបសឧបសឧបសឧប វង្សខេត្ត
57/55 57/55 57/55 57/55 57/55 57/55 57/55 57/55 57/55 57/55 57/55 57/55 57/55 57/55 57/55 57/55 57/55 57/55
8 0 1.33 8 0 1.33 8 0 1.33
255/7523/25/222121/202022268/304
not oxy)Meth not benzene benzene iene che ene ene ene ene razine henyl Ei
Nitrobenzere Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis(2-Chloroethoxy)Methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene Rexachlorobutadiene 2,4,6-Trichlorophenol 2-Chloronaphthalene Acenaphthylene Acenaphthylene 2,4-Dinitrotoluene Fluorene Fluorene 7,4-Dinitrotoluene 4-Chlorophenyl Phenyl Ether 1,2-Diphenylhydrazine 4-Bromophenyl Phenyl Ether Hexachlorobenzene Pentachlorophenol
Nitrobenzene Isophorone 2-Nitrophenole 2-Nitrophenole 3-Nitrophenole 815(2-Chloroett 1,2,4-Trichloro 1,2,4-Trichloro 1,2,4-Trichloro 2-Chloronaphth 2-Chloronaphth Acenaphthene 2,4-Dinitrotolu 5,6-Dinitrotolu 1,2-Diphenylhy 4-Bromophenyl 1,2-Diphenylhy

Parameter	Mal	Ral	units	MB Value		SB Value	% Rec. Quat		Truevalue	Value %	Rec. Qual	. Limits	RPD/RSD Qual	Limits
Anthracene	7	8	ta/Ka	TQ¥	1999.99	27.7	87	50-150						400
Di-N-Butvl Phthalate	2	10	ca/Ka	15.1	299.99	9.02	83	50-150						26
Fluoranthene	, « 0	16	ua/Ka	Q.V	299.99	4.89	103	50-150						35
Pyrene	7	8	ug/Kg	- TOW>	299,999	62.5	76	50-150						38
Renzyl Rutyl Phthalate	•	12	tia/Ka	- QV	299.99	65.1	86	50-150						25
Benzo(a)anthracene	N	. 4	ua/Ka	10€	2000.000	63.1	8	50-150						35
Chrysene	,	∞	ug/Ka	TQ¥	299.99	58.9	88	50-150						٤
Ris(2-Ethylhexyl)Phthalate	2.9	14	tra/Ka	14.5	2997.99	70.7	2	50-150				SSS		3
Di-N-Octvi Phthalate		16	ua/Ka	Q.	7999,999	57.3	86	50-150						35
Renzo(b)fluoranthene	M	9	ua/Ka	JQ.	29,5667	9.02	106	50-150						3 6
Benzo(k) fluoranthene	. 20	• •	ua/Ka	\$ DE	299999	67.3	101	50-150						38
Renzo(a)Dyrene	i en	9	ua/Ka	₩	299,999	8.67	ĸ	50-150						3
Indeno(1,2,3-Cd)Pyrene	٥	8	g/Kg	₩ V	599,999	55.8	78	50-150						382
Dibenzo(a.h)anthracene	_	14	ug/Kg	\$ ₽	2999.99	53.9	2	50-150						100
Benzo(a.h.i)pervlene	æ	16	ug/Kg	₩DL	2999.99	52.1	22	20-150						99
Aniline	- 61	38	ug/Kg	₩D.	2999.99	1 0₩	•	50-150						18
Benzyl Alcohol	9	12	ug/Kg	ADL	2997.99	12.4	• 6	50-150						18
2-Methylphenol	19	38	ug/Kg	₩	2999.99	JO₩	•	60-150						100
4-Methylphenol	1 6	32	ug/Kg	Ç Q-Q-	2999.99	JQ₩	•	.0-150						8
Benzoic Acid	•	12	ug/Kg	JQ₩	2999.99	27.3	• 5	. 50-150						100
2-Methylnaphthalene	3 1.	28	ug/Kg	-TQ₩>	29,0667	46.1	69	50-150						100
2.4.5-Trichlorophenol	2	54	ug/Kg	JQ₩	2999.99	38.2	57	50-150						8
Dibenzofuran	2	28	ug/Kg	0	2999.99		88	50-150						100
Carbazole	۲	14	ug/Kg	Ū₩	2995.99	w.	107	50-150				888		100
Coprostanol	14	28	ng/Kg	₩Đ	666,6667	ww	88	50-150						100
Caffeine	•	12	e3/Kg	√WDΓ	2999.99	ww	141	50-150						8
												3033		

il Limits	100	90	100	8	100	8	1 8	18	180	100	8	<u>5</u>	19	8	180	180	1 8	100	100
RPD/RSD Qual		æ		'n	œ	-	œ		2		N	0	N	38	10	13	2	-1	
Limits	50-150	50-150	50-150	50-150	50-150	50-150	50-150	50-150	50-150	50-150	50-150	50-150	50-150	50-150	50-150	50-150	50-150	50-150	50-150
% Rec. Qual	24	*	* 36	*	* 38	* %	*	24	۶	* 77		٤	20	*	* 87	65	*	*	* *
e MSD Value % Rec.	333	900	999	993	6.7	83	800	5050	(Z.)	35	976	676 6	- T	800	800	635	27.2		8883
																	0 66.6667		
Quaf Limits	G 50-150	SD-15	G 50-150	50-15	6 50-15	G 50-15			50-15	6 50-15	50-15	50-15	50-15	50-15	20-150	50-15	G 50-150	G 50-15	G 50-15
itue % Rec.	87	1 4	07	1 53	32	3 2	38	8	900	9338 9338		100		9379	80	22	**	89	\$2
ue Truevalue MS Value	66.6667 32	%	92 2999	7999	() () ()	8		1 88	2999	, 88	188	90	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	299	28	2999	66.6667 29.7	200	8
SampValue Tr	0000	0000	10000	95	9990	3836	2000	20000	00000	2000	50000	0000	0000	19990	0000	90000	₹	10000	0000
	ng/Kg	ug/Kg	ug/Kg	ug/Kg	20000	-0000	50000	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	eg/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
Mdi Rdi	07 07	9 2	15 30	8 16	.26	.13 .264	.26 .53	15 30	9 18	fs 33	16 32	19 38	15 30	7	17 34	16 32	.26 .53	14 28	.r.
	amine	24000)Ether		2	Je	2	op/l)Ether	pylamine			. conse	en de		y) lethane	٠	nzene		Š
Parameter	N-Nitrosodimethylamine	٥	Bis(2-Chloroethyl)Ether	2-Chlorophenol	3-Dichlorobenzene	4-Dichlarobenzene	2-Dichlorobenzene	Bis(2-Chlaroisopropyl)Ethe	N-Nitrosodi-N-Propylamine	Hexachloroethane	Witrobenzene	sophorone	2-Nitrophenol	4-Dimethylphenol	s(2-Chloroethoxy)4ethane	4-Dichloropheno	1,2,4-Trichlorobenzene	Naphthal ene	Hexach Lorobut adjene
Para	Z-X	Phenol	Bis	ار	٠. ۲.	1.4-	1.2	Bis(X-X	Hexa	Eit.	Isop	2-Ni	2,4-	Bis(2,4-	1,2,	Naph	Hexe

MS:WG55264-3 MSD:WG55264-4 120703-5 Matrix: SALTWTRSED Listtype: ORBWALL Method: EPA 3553B/8270C (7-3-01-004) Project: 423050-160 Pfey: SED

KING COUNTY METRO ENVIRONMENTAL LABORATORY Lab QC Report - 06/29/01 09:40 Run ID: R68341 Workgroup: WG55264 (BS#110-bnall)

Parameter	Mdl	Rdl	Units	SampValue				. Qual Limits	Truevatu	attle MSD Value % Po	ږ	Cation Carlo	0 4507,440	
2,4,6-Trichlorophenol	13	55 26	ug/Kg	₩DL	1999.99	56.1	78	59-1		20	3,5	9	11	
Z-Chloronaphthalene	91	25	6X/gn	₹	66.6667	Acres 1		50-150		anaan	20	50-150	<u>.</u> τ	38
Acenaphing tene Dimathyl Dhthalata	?**	3.5	64/gn	1000	2000,000	O L	104			28.7	8	50-150	7	3
2.6-Dinitrotoluene		35	2 2 2 2 3		00.0001 66.6667		e è			14:5	% ;	50-150	1	100
Acenaphthene	· _	12	ng/Ka	<u> </u>	66.6667		; £		00.000 7,6647	1999	8 7 8 7	50-150	٥,	8
2,4-Dinitrotoluene	2	9	ug/Kg	JQ¥	66.6667		26			57.5	- X	001-00 071-03	- *	93
Fluorene	2.	25	ug/Kg	₩D	2999.99		8	53-150		2052-05	3 FC	50-150		35
Diethyl Phthalate	٠,	2,5	gy/gn	€	29,0667		91			51.6	<u>.</u>	50-150	26	38
4-uniorophenyi Pnenyi Ether N-Witrosodiphenviewime	<u> </u>	Q Ç	08/Kg	<u></u>	25,5567		e;				99	50-150	18	5
1,2-Diphenythydrazine) 2	; ≈	2/80 24/80 24/80	₹	66.6667	5 25.5	130		00.666 66.6667		96	50-150	. .	99
4-Bromophenyl Phenyl Ether	٥	8	ug/Kg	₩D	2999.99	59.6) 8	50-150		9. 21.0	85 - 22	021-02	<u>,</u>	85
Hexachlorobenzene	9. _. .	1.33	ng/Kg	<u>수</u>	66.6667	24.2	₩;			9999	2	50-150	12,	38
Pentach Lorophenot Phenanthrene	n 4	⊇ ∞	49/kg	7 2 7 7	7 7 7 7 7 7 7 7 7 7	61.5 7.7	- 26 - 102	50-150	66.6667	000000	21	50-150	22	100
Anthracene	. 4	. ∞	ug/Kg	5€	66.6667	87.8	325			egestadest	× 5	50-150		25
Di-N-Butyl Phthalate	ın:	e :	ug/Kg	23.6	56.5667	9.7	100		88	one, con	83.5	50-150		35
Fluoranthene	.	9.	63/ga	18.3 ,	66.6667	8 2 3 3	165			rusiusus	108	50-150		38
Pyrene Benzvi Butvi Phthalate	; <	- 2	09/Kg	‡.¥	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	102	146 136	50-150	66.6667	6. 121	104	50-150	34	6
Benzo(a)anthracene	N	. 4	ug/kg	6.08	66.5667	. 6. . 6.	121			*****		50-150		95
Chrysene	7	∞	ug/Kg	5.9	2997.99	8	111			nanaha	33.7	50-150	4.0 4.0	35
Bis(2-Ethylhexyl)Phthalate	۶.٠	7.	ug/Kg	38.1	66.6667	2 ¹	161	L 50-150		e de la como	141	50-150	13	38
Di-N-Octyl Phinalate Renzo(b)flunganthene	o N	۰,	9/89 6/8	2 2 2 3 6	290.99	87.1	131	50-150		0003	11	50-150	12	193
Benzo(k) fluoranthene	1 M	o •o	64/80 64/80	4.3	200.000 200.000 200.000	₹ 2.	12¢	57-12 27-12	7999.99	7. C	107	50-150	8:	100
Benzo(a)pyrene	m	9	ug/Kg	\$	56,6667	97.8	127	50-150		SERVICE.	112	041-04	86	88
Indeno(1,2,3-Cd)Pyrene	0.1	₽:	ug/Kg	JQ₩	29,999	29.7	8	50-150		49.5	1,2	50-150	, c	38
Dibenzo(a,h)anthracene	٧.	2 %	g/Kg	₹	29,999	50.8	21	50-150	7999.99	UZAKA.	:3	50-150)£	38
Aniline	°5	0 %	2 S S	1	1000.00	7. 5 	٤,	R:		ALCEN	65	50-150	6	108
Benzyl Alcohol	· •	32	24/Ka	1 5	2000		οŭ			: ?.	2	50-150	•	8
2-Wethylphenol	16	82	ug/Kg	MDL	7999.99		ίΩ	50-150		3,3,49998	55	* 50-150	-	85
4-Methylphenol	16	32	ug/Kg	₹;	56.6667	39.1	23				25	50-150	13	38
penzoic Acid 2-Methylpaphthalene	0 12	<u>ب</u> ۾	53/E3	5.5 4.5 5.5	/000°00	10¢	\$ ¥	50-150	66.6667		21	50-150	10	8
2,4,5-Trichlorophenol	12:	32	69/89	₹ ₹	66.6667	60.8	85	50-150			χ. Σ	50-150	<u>.</u>	8
Dibenzofuran	4 .	82	ug/Kg	MDL	7999.99	53.6	8				- 89	50-150	7.4	35
Carbazole	.;	4 6	ug/Kg	₹	66.6667	8888	118	50-150	66.6667	_	88	50-150	20	36
Coprostano. Caffeine	± ,0	92	69/Kg 44/Kg	₹ ₹	7999.000 66.6667	576 103	86 155	50-150	666.6667 66.6667	7 561 7 80 4	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50-150	2,	95
) j	•		88888	}	1 3 5	3		<u>.</u>	0¢1-0¢	<u>0</u>	100
						(8)80000								
LD:WG55264-5 L20703-6 Matrix: SALTWIRSED Listtype: ORBNALL	rix: SALTW	TRSED L	isttype: 0		Method: EPA	EPA 35508/8270C		(7-3-01-004) Project:	ct: 423056-160	160 PKey:	y: SED			
Parameter	Mdl	Rdl	Units	SampValue	e Truevalue	LD Vatue	le % Rec.	Qual Limits					1000 COO COO	
N-Nitrosodimethylamine	20	07	ng/Kg	JQ \										
Prenot Ris(2-Chloroathy))Ether	۰, بر	ې د	93 83 83	1 2		₹								\$
		} 	nu jay	1	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	1								180

KING COUNTY METRO ENVIRONMENTAL LABORATORY Lab QC Report - 06/29/01 09:40 Run ID: R68341 Workgroup: WG55264 (BS#110-bnall) LD:WG55264-5 L20703-6 Matrix: SALTWTRSED Listtype: CRBWALL Nethod: EPA 3550B/8270C (7-3-01-004) Project: 423056-16] PKey: SED

Lether 15 264 ug/kg lamine 15 264 ug/kg lamine 15 30 ug/kg lamine 17 34 ug/kg lamine 17 34 ug/kg lamine 17 34 ug/kg lamine 17 35 ug/kg lamine 17 35 ug/kg lamine 17 35 ug/kg lamine 17 35 ug/kg lamine 17 20 ug/kg lamine 17 2	arameter -Chlorophenol	#		S	te Truevalue LD Value		% Rec. Qual	Limits			RPD/R	RPD/RSD Qual	Limits
25			30000000			10€ 10€					,		385
2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	9999999		2000000			. ₹							38
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7			, 9, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,			<u> </u>							93
7.7. 7.7. 7.7. 7.7. 7.7. 7.7. 7.7. 7.7	0403333		X/81			₹							38
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	404899		ug/K			4€							85
7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00000000		48/8 3/8			1							88
1.2 1.3 1.3 1.4 1.5			X/gh			₩							38
1.5 ways and was a series of the series of t	2000 (P.)		48/8 48/8										25
13. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	449999		7 8										32
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	400000		3 3 3 3 3 3 3			1 €							8
13			ug/K			₽							38
25 12 12 12 12 12 12 12 12 12 12 12 12 12			% %			₫₹							38
1,	aportió		, 19, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25			1 €							86
13 26 00000000000000000000000000000000000		7.	ug/K			₽							38
6 12 95/6 400 400 400 400 400 400 400 400 400 40	e00000		3 3 3 3 3 3 3 3 3			₽							100
2.5 ug/kg +001 +001 +	40000		ug/K			•							28
10 10 10 10 10 10 10 10	Ē		3/K			1							38
18 18 18 18 18 18 18 18			4 / 8 / 8 / 8 / 8 / 8 / 8 / 8 / 8 / 8 /			1 0€							93
5.00 1.33 ug/kg 40L 440L 500 E 5.00 E	 		88833			MDF							36
10	.co6668		99999			₹							100
4 8 ug/kg ch01 5 10 ug/kg ch01 4 8 ug/kg ch01 5 1 ug/kg ch01 6 12 ug/kg ch01 6 ug/kg ch01 ch02 6 ug/kg ch01 ch02 8 ug/kg ch01 ch02 8 ug/kg ch01 ch02 8 ug/kg ch01 ch02 9 16 ug/kg ch01 9 16 ug/kg ch01 1 ug/kg ch01 ch01 2 ug/kg ch01 ch01 3	e-00000	. 80	ug/K	****		10.4 4.0					SSC	80866	85
10	00000	2 7±4	S, S			₽.				×	}		38
4 8 ug/kg 400 18.1 2 4 ug/kg 400 2.2 3 6 ug/kg 400 400 400 8.48 5 14 ug/kg 400 400 400 400 400 400 400 400 400 40	econolida G	- 2 2				- 5.55					13		8
2 4 ug/kg Anol. An	00 00 0	ω. •	197	***		18.1			300000 300000 300000		302 2002		38
6.7 14 19/8 401 50.2 888 50.2 888 60.7 14 14.6 50.2 888 60.8 80.8 80.8 80.8 80.8 80.8 80.8	-000000	75 2 2	, 7,8			25. 27.					l		18
6.7 14 ug/kg 31.4 50.2 50.2 5.2 5.2 5.0 5.0 5.2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	uccede)	14	ug/K	***		87.8					883 c		88
6 ug/Kg 400 14.6 6 ug/Kg 400 5.2 6 ug/Kg 400 8.64 18 ug/Kg 400 400 400 400 11.2 16 ug/Kg 400 400 400 400 400 400 400 400 8.85 38 ug/Kg 400 400 400 400 400 400 400 400 400 40			8			50.2					39	8933	38
6 ug/kg 400 5.2 200 E 18 ug/kg 400 400 8.64 114 ug/kg 400 400 400 400 8 115 ug/kg 400 400 400 400 400 8 12 ug/kg 400 400 400 400 400 8 13 ug/kg 400 400 400 400 800 8	aa00000	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °				14.6					č		8
6 USYKG 440L 8.64 18 USYKG 440L 440L 14 USYKG 440L 440L 38 USYKG 440L 440L 12 USYKG 440L 440L 38 USYKG 440L 440L 38 USYKG 440L 440L 33 USYKG 440L 440L	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.v	ug/K			5.2					2	m	9 9 5
16 ug/kg <401	JU-0000	9.	8			% 79.					200	ш	32
16 usy/kg 400 400 400 12 usy/kg 400 400 400 400 400 400 400 400 400 40	~~000	22	19/K										100
38 ug/Kg 440L 440L 12 ug/Kg 440L 440L 38 ug/Kg 440L 440L 32 ug/Kg 440L 440L	ALCOHOLOGICA (CARLOS CARLOS CA		ug/K			1€							8
38 ug/Kg <h0l <h0l="" <h0l<="" th=""><th></th><th></th><th>7/gn</th><th>****</th><th></th><th>₹</th><th></th><th></th><th></th><th></th><th></th><th></th><th>38</th></h0l>			7/gn	****		₹							38
401			7 % 3 %			₽ ₽						-,	85
	austic	16 32	Mg/K			₩							36

KING COUNTY METRO ENVIRONMENTAL LABORATORY Lab GC Report - 06/29/01 09:40 Run ID: R68341 Workgroup: WG55264 (BS#110-bnall)

lat Limits 100 100 100 100 100 100 100 100 100 10	Jal Limits 100 100 100 100 100 100 100 100 100 10
RPD/RSD Quat	RPD/RSD Qual
: SED	
:6160 PKe ₃	
ethod: EPA 35508/8270C (7.3-01-004) P-oject: 423056-160 PKey: SED E Truevalue LD Value X Rec. Qual Limits 46.4 ANDL ANDL ANDL ANDL ANDL ANDL ANDL ANDL	G 00-120 G 00-120 B 0-120 B
5508/8270C (7-3-01-004 LD Value X Rec. Qual 46.4 ANDL ANDL ANDL ANDL ANDL ANDL ANDL ANDL	
Method: EPA 35508/1 lue Truevalue LD Va 46.4 eMbL eMbL eMbL eMbL eMbL eMbL eMbL eMbL	e Truevalue 1629.3333 500.6667 8802.6667 9573.3333 4242.6667 2269.3333 4242.6667 2269.3333 4242.6667 2269.3333 4242.6667 2269.3333 4242.6667
units sampvalue units sampvalue units sampvalue units 50.1 units 50.1 units contract units contr	Listtype: ORBMALL Method: Rdl Units SampVallu 2800 ug/Kg 800 ug/Kg 800 ug/Kg 800 ug/Kg 600 ug/Kg
x: SALTWIRSED L MdI RdI 6 12 24 12 24 14 28 14 28 14 28 14 28	
Day	SRW:WG55264-6 Matrix: OTHR SOLID Parameter Naphthalene Anthracene Fluoranthene Fluoranthene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(x)fluoranthene 300 Benzo(x)fluoranthene 300 Benzo(x)fluoranthene 300 Benzo(a)pyrene 300 Dibenzo(a,h)anthracene 53 Benzo(a,h)anthracene 53

KING COUNTY METRO ENVIRONMENTAL LABORATORY Lab QC Report - 06/29/01 09:40 Run ID: R68341 Workgroup: WG55264 (BS#110-bnall)

d14-Terphenyl	50-150	88 88 87 57 5 5 8 8 8 8 8 8 8 8 8 8 8 8
2,4,6-Tribromopie-	nol 50-150	\$
2-fluorobiphenyl	50	
d4-1,2-Dichlorobe-	nzene 50-150	8888820004444442 ana
6 4-2-Chlorophenot	50-150	888 4448 4448 4848 4848 4848 4848 4848
d5-Nitrobenzene	20	avg=60.75 avg=50.5 avg=57.5 avg=47.5 avg=47.5 avg=73 avg=73 avg=73 avg=73 avg=73 avg=73 avg=73 avg=73 avg=70.25 avg=70.25
d5~Phenat	δ.	avg=57.25 avg=47.3.5 avg=47.3.5 avg=28.7.75 avg=28.7.75 avg=33.25 avg=47.25 avg=47.25 avg=61 avg=61 avg=61 by avg=7.25 avg=61 by avg=7.25 avg=61 by avg=7.25 avg=61 by avg=7.25 avg=61 by avg=7.25 avg=61 by avg=7.25 avg=61 by avg=7.25 avg=61 by avg=61 by avg=61
2-Fluorophenol		
Samote #	1 20202 - 1	L20703-1 L20703-5 L20703-5 L20703-6 L20703-6 L20703-6 L20703-7 L20703-6 WGS5264-2 WGS5264-2 WGS5264-5 WGS5264-5

METRO Environmental Laboratory

WORK GROUP REPORT (wk02)

May 10 2001, 11:12 am

Work Group: WG55245 (PPS#234-pcb) for Department: 7 - Organics, Trace

Created: 09-MAY-01 Due: Operator: lm/mm

Sample	Project Number Project Descrip	tion PKe	ey C Product	Matrix Stat UA	Workdate Duedate
L20703-1 L20703-2 L20703-3 L20703-4 L20703-5 L20703-6 L20703-7 L20703-7 L20703-8 WG55245-1 WG55245-2 WG55245-3 WG55245-4 WG55245-6 Comments:	423056-160 Norfolk Cleanup 88 Norfolk Cleanup 89 Norfolk Cleanup 80 Norfolk Cleanup	Study SED Study SED Study SED Study SED Study SED Study SED SED SED	S PCB S PCB	SALTWTRSED PREP U OTHR SOLID PREP U SALTWTRSED PREP U OTHR SOLID PREP U SALTWTRSED PREP U	08-MAY-01 08-JUN-01 09-MAY-01
1.20703-1 1.20703-2 1.20703-3 1.20703-4 1.20703-5 1.20703-6 1.20703-8 1.2070	3-Grab Composite, 0 - 2 cm 3-Grab Composite, 0 - 10 cm MB050901 WG55245-1 L20703-2 WG55245-3 L20703-2 HS2 L20703-1				

KING COUNTY METRO ENVIRONMENTAL LABORATORY Lab QC Report - 06/25/01 08:35 Run ID: R68221 Workgroup: WG55245 (PPS#234-pcb)

Limits Limits RPD/RSD qual OCIA RPD/RSD Qual Gua RPD/RSD C RPD/RSD MN Limits Linits 50-150 50-150 50-150 50-150 50-150 50-150 Method: EPA 3550B/8082 (7.3.03.002) Project: 423056-160 PKey: SED _ | |-Rec. Rec. 136 34 50 × PKey: SED MSD Value Value PKey: SED 33.9 33.9 33.9 Truevalue 25 Truevatue L2C/703-1 Matrix: SALFWIRSED Listtype: ORPCB Method: EPA 3550B/8032 (7-3-03-002) Project: 423056-160 Method: EPA 3550B/8082 (7-3-03-002) Project: Ю SED PKey: SED Limits 50-150 50-150 80-120 Listtype: DRPCB Method: EPA 35508/8082 (7-3-03-002) Project: Project: Quat Quat % Rec. Quat Qual Rec. Rec. Rec. × 28 145 *8 **2** % ORPCB Method: EPA 35508/8082 (7-3-03-002) Truevalue SRM Value Truevalue LD Value ä Value SB Va 21 22.8 36.3 46L 46L 37.3 19.5 36.3 ¥ Truevalue 25 Truevalue Listtype: ORPCB 23 2 Matrix: OTHR SOLID Listtype: ORPCB SampValue Sampyalue MB Vatue \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ 흡출 SALTWIRSED Units ug/Kg Units 69/kg 69/kg 69/kg 69/kg 69/kg 18/Kg 19/Kg 19/Kg 19/Kg 19/Kg 19/Kg 69/kg Matrix: OTHR SOLID Listtype: Hatrix: Ī 8.33 8.33 Matrix: OTHR SOLID NS: WG55245-3 KSD: WS55245-4 [20703-2 7.2 7.3 Md. 4.2 4.2 4.2 4.2 4.2 Ħ SB:WG55245-2 MB:AG55245-1 Parameter
Aroclor 1016
Aroclor 1221
Aroclor 1242
Aroclor 1248
Aroclor 1248
Aroclor 1248 SRM:W655245-5 Parameter
Aroclor 1016
Aroclor 1221
Aroclor 1242
Aroclor 1248
Aroclor 1248
Aroclor 1248 Farameter Aroclor 1016 Aroclor 1260 D:WG55245-6 1016 1221 1242 1242 1248 1254 Parameter Aroclor 1254 MB: WG55245-1 Parameter Aroclor 10 Aroclor 12 Aroclor Aroclor Aroclor Aroctor

KING COUNTY METRO ENVIRONMENTAL LABORATORY Lab GC Report - 06/25/01 08:35 Run ID: R68221 Workgroup: WG55245 (PPS#234-pcb)

Decacht orobipheny: 50-150 705 99 122 88 112 112 107 100 106 148 134	
2,4,5,6-Tetrachlo- ro-m-xytene 50-150 102 96 119 86 85 85 85 85 85 85 85 85 139 139 133	
Sampte # [20703-1 [20703-2 [20703-3 [20703-4 [20703-6 [20703-6 [20703-6 [20703-6 [20703-6 [20703-6 [20703-6 [20703-6 [20703-7 [20703-8 [20703	